
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327479166

Functionality-Oriented Microservice Extraction Based on Execution Trace

Clustering

Conference Paper · July 2018

DOI: 10.1109/ICWS.2018.00034

CITATIONS

57
READS

907

5 authors, including:

Some of the authors of this publication are also working on these related projects:

software architecture and maintainability View project

quality of distributed system View project

Wuxia Jin

Xi'an Jiaotong University

20 PUBLICATIONS 212 CITATIONS

SEE PROFILE

Ting Liu

Xi'an Jiaotong University

132 PUBLICATIONS 2,384 CITATIONS

SEE PROFILE

Qinghua Zheng

Xi'an Jiaotong University

500 PUBLICATIONS 6,525 CITATIONS

SEE PROFILE

Di Cui

Xidian University

18 PUBLICATIONS 185 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wuxia Jin on 17 October 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327479166_Functionality-Oriented_Microservice_Extraction_Based_on_Execution_Trace_Clustering?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327479166_Functionality-Oriented_Microservice_Extraction_Based_on_Execution_Trace_Clustering?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/software-architecture-and-maintainability?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/quality-of-distributed-system?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xidian-University?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-59d44c1ae7a1aeedd87660a59ad640a9-XXX&enrichSource=Y292ZXJQYWdlOzMyNzQ3OTE2NjtBUzo2ODI4MDg4MDQ2NTUxMDdAMTUzOTgwNTcxMzc1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Functionality-oriented Microservice Extraction Based on Execution Trace Clustering

Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui

Xi’an Jiaotong University
wx jin@stu.xjtu.edu.cn,{tingliu,qhzheng}@mail.xjtu.edu.cn,cuidi@sei.xjtu.edu.cn

Yuanfang Cai

Drexel University
yfcai@cs.drexel.edu

Abstract—The main task of microservice extraction is to
find which software entities (e.g., methods, classes) should be
grouped together from existing monolithic software as candi-
date microservices, responsible for specific functionalities and
evolving independently. Current methods extract microservices
by analyzing source code and following the assumption that
“classes with strong relation should be in the same service”,
which originates from software structure analysis. We find that
1) many program behaviors cannot be explicitly reflected in
source code, and 2) the relation at code-level is not equivalent
to the same functionality. Thus, we propose a functionality-
oriented microservice extraction (FoME) method in this study
by monitoring program dynamic behavior and clustering
execution traces. Instead of source code analysis, the execution
traces of a program are applied to group source code entities
that are dedicated to the same functionality. We also construct
a systematic measurement of microservice by integrating five
complementary metrics of service cohesion and coupling. These
metrics measure Functional Independence of microservices.
That is, it qualifies whether a microservices can have its own
responsibilities independently. In the experiment, our method
is compared with three state-of-the-art methods on four open-
source projects. The microservice candidates generated using
our method present similar functional cohesion to the services
produced using the other methods, but have considerably looser
coupling measurements (dramatically reducing measurements
of IRN and OPN).

Keywords-microservice; executing trace; quality metrics;

I. INTRODUCTION

Microservice-based systems aims to integrate a suite of

smaller services into an application. Each service runs in

its own process1 and can evolve independently. These ser-

vices are typically built around business capabilities and are

responsible for their own functionalities. Researchers recom-

mend that extracting microservices from existing monolithic

code base is easier than constructing microservices from

scratch [1]. This extraction process begins with a monolith

code base, followed by classifying related functionalities into

individual business capability groups, then implementing

each group as a service [2]. In industrial practice, leading

enterprises have been extracting microservices from mono-

liths, such as Netflix and Amazon.

The main task of microservice extraction is to recommend

promising microservice candidates to software architects or

developers, such that they do not have to manually conduct

1https://martinfowler.com/articles/microservices.html

this labor-intensive work [3]. This extraction process is simi-

lar to existing software clustering or software decomposition

methods, such as Bunch [4] and ACDC [5]. The problem

is that, existing methods process source code and their

syntactical relations to facilitate software clustering based

on various rationales, such as coupling and cohesion [6], or

naming convention [7]. However, no evidence proves that

such relations definitely mean the same business capability.

Therefore, we need further explore how entities with similar

business logic can be found to construct a service.
To address this problem, we first leverage execution

traces collected at runtime to guide microservice extraction.

Execution traces are able to expose actual software behavior

accurately [8]. A lot of tools can help obtain execution

traces [9] [10]. Here we used Kieker [11] to monitor four

software projects, in which 204 unique execution traces

were extracted. This study shows that an execution trace

inherently represent a business function. We also contribute

an execution-oriented clustering method towards group-

ing similar functionalities as a service. We use FoME
(Functionality-oriented Microservice Extraction) to refer to

the proposed method. Concretely, we cluster execution traces

to recommend microservice skeletons, and then apply two

strategies, namely, “Move class” and “Pull up class”, to deal

with crossovers overlapping between services.
Research on microservices remains in its early stage, and

no systematic evaluation for microservice extraction is yet

available [12][13]. Therefore, to estimate whether the pro-

posed method can produce microservices with better func-

tional independence, we integrate five metrics to measure

Functional Independence quality of extracted microservices.
In summary, this paper makes the following contributions:

• We utilize runtime execution traces of software systems

in microservice extraction. To our knowledge, this work

is the first to leverage execution traces for facilitating

microservice extraction.

• We design an execution trace-oriented clustering

method to achieve functionality-based microservice ex-

traction. This approach clusters source code entities that

are dedicated to the same functionalities.

• We construct a systematic measurement by collecting

five complementary metrics of service cohesion and

coupling. This measurement system measures whether

the extracted microservice candidated can present better

211

2018 IEEE International Conference on Web Services

978-1-5386-7247-1/18/$31.00 ©2018 IEEE
DOI 10.1109/ICWS.2018.00034

Execution Trace
Analysis

Instrumented
System

Test cases

Log
Files

Test casesTest Cases

Microservice
Extraction

Class-level
Execution Traces

Method-level
Execution Traces

Microservice
Candidates

Execution
Monitoring

Figure 1. Overall process of the proposed method

Functional Independence.

The rest of this paper is summarized as follows. Sec-

tion II describes our proposed approach for extracting mi-

croservices from an existing monolithic system. Section III

illustrates the collected metrics for measuring Functional
Independence. Section IV presents the experiments. Sections

V and VI present threats to our work and related works.

Section VII provides the conclusion.

II. METHODOLOGY

As shown in Figure 1, our method consists of three main

steps. 1) Execution Monitoring. We apply Kieker 1.13 [11]

to insert probes into the target system. The Instrumented
System is executed using the pre-prepared Test Cases that

cover as many functions as possible. The execution paths

are recorded and stored in Log Files. 2) Execution Trace

Analysis. From Log Files, we analyze execution traces to

generate Class-level and Method-level Execution Traces.

3) Microservice Extraction. Algorithms are proposed to

generate Microservice Candidates that consist of classes,

interfaces and application programming interfaces (APIs).

The first step is implemented by following the Kieker user

guide. The details of Step 2 and 3 are explained in this paper.

A. Execution Trace Analysis

As shown in Figure 2(a), the execution of JPetstore2 is

monitored and recorded in Log Files with Kieker. Each

line corresponds to one record, consisting of ten items:

Type, SeqID, Method, SessionID, TraceID, T in,

Tout, HostName, Eoi and Ess. Five items are used to

generate the execution traces. Method denotes the complete

signature of an invoked method, including modifier, class

name, method name, and parameter list. SessionID is a

globally unique ID labeling a session. TraceID is a globally

2https://github.com/mybatis/jpetstore-6

unique ID labeling a trace. Eoi and Ess are the calling order

and the depth of the calling stack of the method.

We define LOG = {rec} is a set of records generated by a

monitored system. For each record rec ∈ LOG, it includes

five items mentioned above: Method, SessionID, TraceID,

Eoi and Ess.

We define LOGt as the completed execution log of a

function t: LOGt = {rec|rec ∈ LOG, and ∀reci, recj ∈
LOGt, fse(reci) = fse(recj), ftr(reci) = ftr(recj)}.
fse : rec → SessionID, ftr : rec → TraceID, feoi :
rec→ Eoi, and fess : rec→ Ess. All records rec in LOGt

present the same SessionID and TraceID, corresponding to

all executions about a specific function. This is inherent

in logs, since the used instrumentation technique can end-

to-end (e2e) track executions from starting to finishing

a function through different code layers. Even though a

function execution may involve more than one thread, or

more than one process, its recorded recs will always contain

the same SessionID and TraceID.

In terms of (SessionID, TraceID), we can form a partition

ζ of LOG: ζ = {LOGt} and ∀LOGt, LOGk ∈ ζ, t �=
k, LOGt �= ∅, LOGk �= ∅, LOGt ∩ LOGk = ∅. That is,

LOG =
⋃

LOGt∈ζ
LOGt.

We then try to extract method calls from LOGt ∈ ζ.

Define that (mi,mj) (i.e. mi → mj) is a relation of Method
Call, in which mi is caller and mj is callee. reci is the

record including mi and recj is the record including mj .

We identify a Method Call relation based on the rule:

If fess(reci) = fess(recj) − 1, feoi(reci)<feoi(recj),
and ∀reck ∈ S = {reck|fess(reck) = fess(reci), k �=
i}, feoi(reck)<feoi(reci), we conclude mi is caller of mj .

For a LOGt, we define its corresponding method-

level execution trace as an ordered sequence

tr : 〈(mi1,mj1), (mi2,mj2), ..., (min,mjn)〉, where

feoi(recj1)<feoi(recj2)<...<feoi(recjn). A method-level

execution trace presents the method-calling relation and

invocation order. Then processing all LOGt ∈ ζ in above

way, we can finally get: TR = {tr} and |TR| = |ζ|. TR is

called Execution Traces, or more specifically, Method-level
Execution Traces.

Removing duplicated elements from TR, we finally get a

new TR, in which every element is a unique method-level

execution trace which corresponds to one specific function.

For tri ∈ TR, we can extract the corresponding class-

level execution trace d ctracei. d ctracei is an ordered

sequence d ctracei : 〈(ci1, cj1), (ci2, cj2), ..., (cin, cjn)〉,
where ci denotes the class which contains method mi.

A class-level execution trace is a class-granularity call-

ing sequence, showing which classes are dedicated to the

same functional execution. Then for TR, we finally get:

D CTrace = {d ctracei}. D CTrace is called Class-
level Execution Traces. Considering the example of Figure

2(a), its class-level and method-level execution traces are

212

Algorithm 1: Execution trace clustering

Input: D CTrace = {d ctracei},
d ctracei = {ci1, ci2, ..., cin},
D TCDep = {d tcdep(d ctracei,cj)},
M ∈ [1, size(D CTrace)]

Output: clusterk = {d ctracei},
clusterk ⊂ D CTrace, 1 ≤ k ≤M

for (j = 0; j < size(D CTrace); j ++) do
clusterj = d ctracej ;

end
i = size(D CTrace);
repeat

for (j = 0; j < i; j ++) do
for (k = 0; k < i; k ++) do

simMatrix[j][k] =
Sim Func(clusterj , clusterk, D TCDep);

end
end
(j, k) = simMatrix.index(max(simMatrix));
clusterj .add(clusterk); delete clusterk;

i = i− 1;

until i < M ;

visualized in Figure 2(b) and 2(c).

B. Microservice Extraction: FoME

This section presents our approach FoME for extracting

microservice candidates, i.e., their classes, interfaces, and

APIs, from the aforementioned execution traces. The ap-

proach consists of three steps: 1) class clustering, 2) shared

class processing, and 3) microservice candidate generation.

1) Class clustering: Microservice design should follow

the “Single Responsibility Principle”3. This principle recom-

mends that one service should be changed with one unique

reason. A class-level trace corresponds to the execution of a

function point of the original monolithic software. Therefore,

we can group the classes dedicated to the same business

logic as the skeleton of one microservice by clustering the

execution traces.

We design an execution trace clustering algorithm

(Algorithm 1). We use classic hierarchical clustering

with a given parameter M . M is the number

of clusters. d tcdep(d ctracei,cj) is measured as

the times that class cj appears in d ctracei.
D TCDep is a set of all d tcdep(d ctracei,cj).

Sim Func(clusterj , clusterk, D TCDep) computes

the similarity between clusterj and clusterk by utilizing

the Jaccard Coefficient [14]. After clustering, the generated

M clusters correspond to the skeletons of M services.

3https://www.infoq.com/articles/microservices-intro

2) Crossover processing: Similar to traditional software

clustering methods, several classes are clustered into more

than one service, called shared classes or crossovers. These

classes are crossovers in class granularity among bounded

contexts in terms of domain concept or logic [15].

In traditional software clustering, a crossover is assigned

to a particular cluster if its dependency on that cluster is

stronger than that on other clusters [16]. However, this

approach is not the only viable one in practice. Some shared

classes can also be extracted to a separate service. For

example, when several services share classes, which are not

dedicated to the business logic, these shared classes do not

exhibit a strong functional relation to their located service

skeletons. Accordingly, packaging the classes into a newly

created service is appropriate. In this manner, the shared

new service can be maintained separately. As long as the

provided interfaces are not changed, frequent updates to the

new service will not influence the services that use it.

In our work, two strategies, namely, “Move class” and

“Pull up class”, which are similar with the “Move method”

and “Pull up method” in software code-level refactor-

ing [17], are designed to further handle the aforementioned

classes. Assume there is a shared class ck which is clustered

into two services’ skeletons clusteri and clusterj . We select

a strategy by considering the dependency between the shared

class and clusters. D SCdep(clusteri, ck) computes the

dependency between clusteri and ck as follows:

D SCdep(clusteri, ck) =∑size(clusteri)
j=1 d tcdep(d ctracej , ck)

size(clusteri)
,

d ctracej ∈ clusteri, 1 ≤ j ≤ size(clusteri),

d tcdep(d ctracej , ck) ∈ D TCDep

(1)

If a class, ck, exhibits high dependency with one service

(larger than a threshold), we can simply move this class

into that service by using “Move class”. If the dependency

of class ck is weak with clusteri and clusterj , “Pull up

class” is recommended; that is, the shared class ck will be

created as a new service clusterl. “Pull up class” is suitable

for shared classes that are relevant to tool sharing.

3) Microservice candidate generation: Integrating the

aforementioned clustered classes with detailed Method-level
Execution Traces TR, we can identify Interfaces and cor-

responding fine-grained APIs for each extracted microser-

vice candidate. Here, APIs are fine-grained operations in

the method level that correspond to inter-service calling

methods. Interfaces correspond to the original classes of the

monolith involved in the APIs. The APIs and Interfaces are

provided by one extracted service to other extracted services.

III. EVALUATION METRICS

We aim at extracting microservices in a functionality-

oriented way, so the produced microservice is expected

213

$1;1500626025689655630;public org.mybatis.jpetstore.domain.Product.<init>();5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;
1500626025689648860;1500626025689651999;123-VirtualBox;4;3
$1;1500626025689739691;public void org.mybatis.jpetstore.domain.Product.setProductId(java.lang.String);5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;
1500626025689734124;1500626025689736694;123-VirtualBox;5;3
$1;1500626025689850089;public void org.mybatis.jpetstore.domain.Product.setName(String);5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;
1500626025689844781;1500626025689847246;123-VirtualBox;6;3
$1;1500626025689879467;public void org.mybatis.jpetstore.domain.Product.setDescription(String);5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;
1500626025689874486;1500626025689876759;123-VirtualBox;7;3
$1;1500626025689974477;public void org.mybatis.jpetstore.domain.Product.setCategoryId(String);5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;
1500626025689893232;1500626025689970769;123-VirtualBox;8;3
$1;1500626025691084687;public java.util.List org.mybatis.jpetstore.service.CatalogService.searchProductList(String);5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;
1500626025678823394;1500626025691080252;123-VirtualBox;3;2
$1;1500626025691112388;public net.sourceforge.stripes.action.ForwardResolution org.mybatis.jpetstore.web.actions.CatalogActionBean.searchProducts();
5EFF09C5595B9AF14AAE1D89912AF72B;4363988038922010695;1500626025678738714;1500626025691109178;123-VirtualBox;2;1

org.mybatis.jpetstore.web.actions.CatalogActionBean
 org.mybatis.jpetstore.service.CatalogService

 org.mybatis.jpetstore.domain.Product
 org.mybatis.jpetstore.domain.Product
 org.mybatis.jpetstore.domain.Product
 org.mybatis.jpetstore.domain.Product
 org.mybatis.jpetstore.domain.Product

org.mybatis.jpetstore.web.actions.CatalogActionBean.searchProducts()
 List org.mybatis.jpetstore.service.CatalogService.searchProductList(String)

 org.mybatis.jpetstore.domain.Product.<init>()
 void org.mybatis.jpetstore.domain.Product.setProductId(java.lang.String)
 void org.mybatis.jpetstore.domain.Product.setName(String)
 void org.mybatis.jpetstore.domain.Product.setDescription(String)
 void org.mybatis.jpetstore.domain.Product.setCategoryId(String)

(a) Snippet of Log Files

(b) Class-level execution trace (c) Method-level execution trace

Figure 2. Execution logs and traces of JPetstore

to present functional independence. That is, ideally, a mi-

croservice should present its own single responsibilities,

such that evolving independently. More specifically, mi-

croservice should be functionally cohesive and decoupled

from other services [1]. A functionally cohesive service

classifies related functional behaviors into a group, and ex-

cludes unrelated ones. Athanasopoulos el al. Many cohesion

metrics have been proposed such as [18] and [19]. [20] used

cohesion to drive decomposition of service interface. When

services are loosely coupled, a functional update to one

service will not require a change to another service. Ouni

et al. [21] used coupling and other metrics to detect anti-

patterns in web services. Adjoyan et al. [22] minimized the

number of service interfaces to facilitate service identifica-

tion. In general, high cohesion and loose coupling are com-

plementary, and they have been investigated simultaneously

in traditional software design research. However, research

on microservice architecture remains in an early stage. No

widely accepted evaluation metrics for microservice works

is yet available [12][13].

In this work, we define a quality criteria named Func-
tional Independence, qualifying the extent of independence

to which microservices present their own functionalities.

To quantify this attribute, from existing works we collect

five metrics CHD (CoHesion at Domain level), CHM
(CoHesion at Message level), IFN (InterFace Number),

OPN (OPeration Number)and IRN (InteRaction Number),

to build a systematic evaluation of Functional Independence
for microservices. More concretely, CHD and CHM mea-

sure the functional cohesion of microservices; IFN , OPN
and IRN measure the coupling between microservices. We

will first define several parameters to explain these metrics.

Then we will formally present the metrics.

S Ci is a set of classes contained in Servicei. S Ii is

a set of interfaces provided by Servicei. Opi is an API

provided by interface Ii. Opi includes its name (namei),
returning parameters (resi), and input parameters (pasi).
TOpi

is used to describe the set of domain terms extracted

from the namei of Opi.
Services =

⋃
i=1,2,...,K

Servicei, Servicei = (S Ci, S Ii)

S Ci = {ci1, ci2, ..., ciki
}, S Ii = {Ii1, Ii2, ..., Iini

}
Ii = {Opi1, Opi2, ..., Opili}, Opi = (resi, namei, pasi)
pasi = {pi1, pi2, ..., pimi}, resi = {ri1, ri2, ..., ripi}

Metric 1: CHM. CHM is used to measure the average

cohesion of service interfaces at message level. It is a

variation of Lack of Message-Level Cohesion LoCmsg[20].

CHM = 1 − LoCmsg . CHM is more, the better. It’s

formalized as follows:

CHM =

∑∑K
i=1 ni

j=1 CHMj∑K
i=1 ni

(2)

Where,

CHMj =

⎧⎨
⎩

∑

(k,m)

fsimM (Opk,Opm)

|Ii|×(|Ii|−1)/2 , if |Ii| �= 1

1, if |Ii| = 1

fsimM (Opk, Opm) = (|resk∩resm||resk∪resm| +
|pask∩pasm|
|pask∪pasm|)/2.

ni is the number of provided interfaces of Microservice

i. K is the number of microservices identified from a

monolithic software. CHMj measure cohesion of Ii at

message level. Opk and Opm are operations provided by

Ii, and k �= m. fsimM computes the similarity between two

operations at message level. It is the average of similarity

in terms of input message (eg. parameters) similarity and

output (eg. returnings).

Metric 2: CHD. CHD is used to measure the average

214

cohesion of service interfaces at domain level. It is a

variation of Lack of Domain-Level Cohesion LoCdom[20].

CHD = 1 − LoCdom. CHD is more, the better. It’s

formalized as follows:

CHD =

∑∑K
i=1 ni

j=1 CHDj∑K
i=1 ni

(3)

Where,

CHDi =

⎧⎨
⎩

∑

(k,m)

fsimD(Opk,Opm)

|Ii|×(|Ii|−1)/2 , if |Ii| �= 1

1, if |Ii| = 1
fsimD(Opk, Opm) = |TOpk

∩ TOpm
|/|TOpk

∪ TOpm
|

ni and K are same symbols with those defined in CHM
formulation. fsimD computes the similarity between two

operations at domain level. TPi is used to describe the set

of domain terms extracted from the Namei of Opi.
Metric 3: IFN. IFN indicates the number of interfaces

[22] provided by an extracted service to other services

averagely. IFN is smaller, the better.

IFN =
1

K
|

⋃
i=1,2,...,K

Service Ii| (4)

Metric 4: OPN. OPN denotes the number of operations

provided by the extracted microservices. OPN is less, the

better.

OPN =
∣∣ ⋃
i=1,2...,

∑i=K
i=1 ni

Ii
∣∣ (5)

Metric 5: IRN. IRN represents the number of method

calls across two services. IRN is smaller, the better [1].

IRN =
∑

(Opj ,Opk)

wj,k (6)

Where, wj,k is the calling frequency from Opj to Opk.

Opj and Opk are involved in inter-service interactions

between the extracted microservices.

IV. EXPERIMENTS

We first introduce the experimental setup, then use the

case of JPetstore to illustrate the result. Finally, we evaluate

our method by comparing it with three existing methods,

using the metrics presented in Section III.

A. Setup

1) Subjects: We study monolithic web applications be-

cause their server-side codes are typically packaged into a

single unit, such as WAR or EAR files, in the earliest days.

Large-scale monolithic web applications usually suffer from

maintainability and scalability issues due to their size and

complexity. Our experiments aim to extract microservice

candidates for the server-side of web applications.

We collect four web applications as subjects, and the basic

information of these applications is provided in Table I.

Table I
SUBJECT PROJECTS INTRODUCTION

Subject Version Description SLOC Class Test case

JPetstore 6.0.2 e-store 1438 24 15
Springblog 2.8.0 blogging 3583 85 33
JForum 2.1.9 forum 29550 340 69
Roller 5.2.0 blogging 47602 534 87

These monolithic web systems differ in scale and are all im-

plemented using JAVA. JPetstore is a pet store e-commerce

demo of online website. JForum is a discussion board

system. Springblog is a blogging system. Roller is a full-

featured, multi-user and group-blog server suitable for blog

sites. Column SLOC shows the lines of JAVA code. Column

Class counts classes without inner classes. These subject

projects have been collected in https://github.com/wj86.
2) Test cases: We designed test cases as input to drive

software execution. The test cases contained in the original

repository are not designed to generate execution traces that

accurately indicate business functionality. Instead, many of

these test cases are unit tests and use mock approaches.

Thus, new test cases should be designed. The explicit func-

tion entry of targeted software systems is GUI. Accordingly,

we designed test cases by utilizing all GUI entries to cover

the maximum number of software system functions. In

particular, column Test case of Table I shows the number

of unique test cases we have designed. The detailed test

cases can be found in https://github.com/wj86/FoME.

B. Case Study on JPetstore

We use JPetstore as an example to illustrate the processing

results of our method. Figure 2(a) shows the Logging Files
after executing one test case. The class-level and method-

level execution trace of this test case are visualized in Figure

2(b) and 2(c) respectively. Similarly, all 15 method-level

and 15 class-level execution traces can be generated when

executing the designed 15 test cases.

Figure 3 illustrates the component model of the target

microservices that contains three microservices that must be

extracted. The three microservices are Service Account, Ser-
vice Product, and Service Order. Service Order requires

three interfaces provided by other two services to fulfill

its functionality. Figure 4 depicts how classes are grouped

into three microservice candidates. We identify the interfaces

and fine-grained API signatures (Figure 5) provided by

the microservices using 15 method-level execution traces.

Our proposed method can generate the three candidates

automatically and produce the aforementioned information

to assist architects or developers, reducing the manual effort

needed to extract microservice candidates.

C. Experimental Evaluation

1) Compared methods: Our method is compared with

the following state-of-the-art methods: LIMBO [23], WCA

215

Service_Order

Service_Account Service_Product

Interface_ProductInterface_ItemInterface_Account

Figure 3. Three microservices extracted from JPetstore

Service_Product:
org.mybatis.jpetstore.domain.Category
org.mybatis.jpetstore.web.actions.AbstractActionBean
org.mybatis.jpetstore.mapper.CategoryMapper
org.mybatis.jpetstore.service.CatalogService
org.mybatis.jpetstore.web.actions.CatalogActionBean
org.mybatis.jpetstore.domain.Product
org.mybatis.jpetstore.mapper.ProductMapper
org.mybatis.jpetstore.domain.Item
org.mybatis.jpetstore.mapper.ItemMapper

Service_Order:
org.mybatis.jpetstore.domain.Cart
org.mybatis.jpetstore.domain.CartItem
org.mybatis.jpetstore.web.actions.CartActionBean
org.mybatis.jpetstore.service.OrderService
org.mybatis.jpetstore.domain.Sequence
org.mybatis.jpetstore.mapper.SequenceMapper
org.mybatis.jpetstore.domain.Order
org.mybatis.jpetstore.mapper.OrderMapper
org.mybatis.jpetstore.domain.LineItem
org.mybatis.jpetstore.mapper.LineItemMapper
org.mybatis.jpetstore.web.actions.OrderActionBean

Service_Account:
org.mybatis.jpetstore.service.AccountService
org.mybatis.jpetstore.web.actions.AccountActionBean
org.mybatis.jpetstore.domain.Account
org.mybatis.jpetstore.mapper.AccountMapper

Figure 4. Classes in each microservice

[14], and MEM (Microservice Extraction Model) [3]. WCA
is a hierarchical clustering method that leverages two mea-

sures to determine the similarity between classes: Unbiased

Ellenberg (UE) and Unbiased Ellenberg-NM (UENM). Here

we use WCA with UENM for comparison because it per-

forms better than UE [24]. LIMBO uses information loss

to measure the distance between classes. MEM cuts the

class graph of the original monolith. Relation on edges is

extracted using three strategies, namely, logical, semantic,

and contributor couplings. In this paper, we use semantic

coupling-based approach for comparison because the other

two strategies cover an extremely small number of classes

in our target projects.

2) Coverage analysis and the baseline: Coverage refers

to the proportion of classes that are covered in the execution

traces in our method, or the classes that participated in the

APIs of Interface_Item:
Void org.mybatis.jpetstore.domain.Item.setItemId(String)
Void org.mybatis.jpetstore.domain.Item.setListPrice(BigDecimal)
Void org.mybatis.jpetstore.domain.Item.setUnitCost(BigDecimal)
Void org.mybatis.jpetstore.domain.Item.setSupplierId(int)
Void org.mybatis.jpetstore.domain.Item.setProduct(domain.Product)
Void org.mybatis.jpetstore.domain.Item.setStatus(String)
Void org.mybatis.jpetstore.domain.Item.setAttribute1(String)
String org.mybatis.jpetstore.domain.Item.getItemId()
BigDecimal org.mybatis.jpetstore.domain.Item.getListPrice()

APIs of Interface_Account:
String org.mybatis.jpetstore.domain.Account.getFirstName()
String org.mybatis.jpetstore.domain.Account.getLastName()
String org.mybatis.jpetstore.domain.Account.getAddress1()
String org.mybatis.jpetstore.domain.Account.getAddress2()
String org.mybatis.jpetstore.domain.Account.getCity()
String org.mybatis.jpetstore.domain.Account.getState()
String org.mybatis.jpetstore.domain.Account.getZip()
String org.mybatis.jpetstore.domain.Account.getCountry()
String org.mybatis.jpetstore.domain.Account.getUsername()

APIs of Interface_Product:
Void org.mybatis.jpetstore.domain.Product.setProductId(String)
Void org.mybatis.jpetstore.domain.Product.setName(String)
Void org.mybatis.jpetstore.domain.Product.setDescription(String)
Void org.mybatis.jpetstore.domain.Product.setCategoryId(String)

Figure 5. Interfaces and APIs provided by each microservice

Table II
CLASS COVERAGE OF DIFFERENT METHODS

Subject LIMBO WCA MEM FoME

JPetstore 100% 100% 95.83% 100%
Springblog 91.76% 91.76% 85.88% 72.94%
JForum 97.15% 97.15% 60.76% 61.39%
Roller 96.22% 96.22% 77.94% 77.31%

Table III
UNCOVERED CLASSES ANALYSIS OF SPRINGBLOG

Type Proportion Description

NoBehavior 7.06% Classes only having member variables but
no member methods.

Exception 2.35% Classes responsible for exceptions.
3rdPartyService 9.41% Classes accessing third party services.
Other 8.24% Other reasons.

clustering using the above existing methods. Table II shows

the coverage of all the four methods. We can observe that

the coverage is different in various methods and is not 100%

in most cases. The coverage of LIMBO and WCA is always

the same, because both methods are based on class structural

dependency from source codes. MEM is based on class-

to-class semantic coupling through information retrieval

techniques. Each pair of classes can be assigned a value

within [0.0, 1.0], which indicates the probability that they

are semantically related. Here, we empirically select 0.7 as

the threshold to determine the relation.

The further investigation on the coverage of FoME shows

that uncovered classes could be categorized as four types as

shown in Table III, in which Springblog is used as an exam-

ple: 1) NoBehavior classes. They are in models.dto.*.

Execution traces cannot reflect these classes without behav-

iors. 2) Exception classes. They are included in error.*.

Errors will not happen because the designed test cases are

executed successfully. 3) 3rdPartyService classes. Located in

support.web.*, these classes are mainly for accessing

Markdown, YouTube linking, and syntax highlighting. 4)

Other classes. We can see those classes are excluded due

to their irrelevance to business logic.

To conduct a fair comparison, we use the same set of

classes covered by executing traces as the baseline, because

of the accuracy of dynamic executing traces. We obtain

WCA, LIMBO, and MEM clusterings as follow: 1) WCA

and LIMBO. The two methods utilize software structural

dependency as input. The direct application of these methods

on baseline classes may produce clusterings that do not

cover all the baseline classes. Therefore, we first run these

methods using all classes, and then filter out the results using

the baseline classes. 2) MEM. Semantic similarity can be

measured for most class-class pairs. Therefore, we directly

apply this method on the baseline classes.

216

Table IV
MEASUREMENT RESULTS

Subject
(Microservice)

Metric
Methods

LIMBO WCA MEM FoME

JPetstore(3)

CHD 0.6-0.7 0.6-0.7 0.6-0.7 0.6-0.7
CHM 0.5-0.6 0.5-0.6 0.5-0.6 0.7-0.8
IFN 2.3333 1.0000 0.6667 1.0000
OPN 68 44 39 22
IRN 329 68 48 35
Total 1 1 2 4 *

Springblog(7)

CHD 0.7-0.8 0.8-0.9 0.8-0.9 0.8-0.9
CHM 0.6-0.7 0.7-0.8 0.7-0.8 0.7-0.8
IFN 5.2857 2.0000 1.4286 1.0000
OPN 147 33 21 7
IRN 238 52 30 26
Total 0 2 2 5 *

JForum(9)

CHD 0.6-0.7 0.5-0.6 0.6-0.7 0.7-0.8
CHM 0.6-0.7 0.5-0.6 0.6-0.7 0.7-0.8
IFN 3.5556 6.4444 4.2222 2.5556
OPN 94 25 11 70
IRN 993 691 145 97
Total 0 0 1 4 *

Roller(16)

CHD 0.7-0.8 0.8-0.9 0.8-0.9 0.8-0.9
CHM 0.6-0.7 0.6-0.7 0.6-0.7 0.6-0.7
IFN 13.3125 1.1250 1.4375 1.7500
OPN 1062 56 66 56
IRN 46964 4966 2786 1441
Total 1 4 * 2 4 *

a Microservice is the number of extracted microservices.
b “Total” shows the number of metrics, in which a method outperforms
others.
c * highlights the best one according to ’Total’.

3) Evaluation results: We configure all methods to ex-

tract the same number of target microservices. The number

of microservices is determined by the domain experts. In

Table IV, the first column shows the project name and the

number of services to be extracted. Row CHM and CHD
present cohesion measures, the higher the better. Since small

differences between CHM (or CHD) scores are insignificant,

we use a scope (e.g., [0.6, 0.7]) of a cohesion score instead

of a specific value (e.g., 0.655). The measurements including

IFN, OPN and IRN, the lower the better.

The results indicate that FoME outperforms other methods

in most metrics. Specifically, nearly all of the methods can

achieve functionally cohesive microservices, whereas our

method generates significantly loosely coupled microser-

vices. In particular, when compared with the secondary best

measures, our method can reduce coupling dramatically in

metrics of OPN and IRN. In general, the proposed method

can obtain microservices with better Functional Indepen-
dence over existing methods.

V. THREATS TO VALIDITY

Even though execution trace is a promising basis for

microservice extraction, it suffers from several limitations.

First, all execution traces are generated using given test

cases and captured using instrumentation. Consequently, the

quality of test cases becomes critical: these test cases should

cover the maximum number of business functionalities.

Otherwise, function-relevant classes may not be executed

and will not be grouped into suitable services. This lim-

itation is acceptable because the architects in charge of

microservice extraction should have sufficient knowledge of

target systems, including test cases, execution environment,

parameter setting. In addition, state-of-the-art instrumenta-

tion techniques will result in additional overhead in system

execution and may even cause system crash down. Our

method provides a post-mortem analysis under a testing

environment. It will not influence the runtime system in a

production environment.

Second, microservice architecture is still in its infancy.

Estimation is lacking in nearly all existing works [12][13].

As a consequence, we cannot evaluate the proposed method

against a widely-accepted measuring system. To address

this problem, we evaluated the proposed method from two

dimensions. First, we have collected cohesion and coupling

scores to systematically evaluate extracted microservices

from the perspective of maintainability. Second, we have

made comparions with three state-of-the-art methods: WCA,

LIMBO, and MEM. WCA and LIMBO works are traditional

software decomposition methods, which also have been

selected as comparing methods in existing works [24][16].

MEM is the latest microservice extraction method.

Finally, our work aims to provide assistance, and not

complete substitution to manual microservice extraction,

which is a labor- and human wisdom-intensive work. The

proposed method can help mitigate the burden of architects

or developers, but there is still a long way to go before fully

automated microservice extraction can be achieved, similar

to auto-code generation, auto-debugging and auto-repair.

VI. RELATED WORK

Software Decomposition. Software decomposition aims to

split a large system into smaller and manageable clusters. It

is a general topic. WCA and LIMBO are classic decom-

position methods that use static structural relation extracted

from source code as input[14][24]. There are similar work

dedicated to software architecture recovery [7]. Recently,

[16] [24] performed a comparative analysis of six state-of-

the-art techniques of software architecture recovery.

Microservice Extraction. Microservice extraction is a form

of software decomposition in the realm of service-oriented

architecture, a counterpart of traditional software decompo-

sition. [25] conducted microservice extraction by starting

with splitting a database. This approach requires manually

splitting database tables into groups, which is also a tedious

work. Learning from traditional software decomposition,

[3] partitioned the class graph of a monolithic software

into components similarly based on class-to-class coupling.

They considered individual components as microservice

candidates.

217

VII. CONCLUSION

In this paper, we propose a functionality-oriented mi-

croservice extraction method to automatically generate mi-

croservice candidates from a monolithic software system.

We use execution traces to guide the grouping of source

code entities that are dedicated to the same functionality.

Compared with other methods using static source code,

execution traces can better reflect business functionality.

By measuring the Functional Independence quality criteria,

the experiments using four open-source projects show that

our method can extract microservice candidates with similar

cohesion scores, but perform considerably better in terms of

coupling scores than LIMBO, WCA and MEM.

ACKNOWLEDGMENT

This work was supported by National Key RD Program

of China (2016YFB1000903), National Natural Science

Foundation of China (61772408, U1766215, U1736205,

61721002, 61472318, 61532015, 61632015), Fok Ying-Tong

Education Foundation (151067), Ministry of Education In-

novation Research Team (IRT 17R86) and Project of China

Knowledge Centre for Engineering Science and Technology.

REFERENCES

[1] S. Newman, Building microservices: designing fine-grained
systems. ” O’Reilly Media, Inc.”, 2015.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices:
yesterday, today, and tomorrow,” in Present and Ulterior
Software Engineering. Springer, 2017, pp. 195–216.

[3] G. Mazlami, J. Cito, and P. Leitner, “Extraction of mi-
croservices from monolithic software architectures,” in Web
Services (ICWS), 2017 IEEE International Conference on.
IEEE, 2017, pp. 524–531.

[4] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner,
“Bunch: A clustering tool for the recovery and maintenance
of software system structures,” in Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference
on. IEEE, 1999, pp. 50–59.

[5] V. Tzerpos and R. C. Holt, “Accd: an algorithm for
comprehension-driven clustering,” in Reverse Engineering,
2000. Proceedings. Seventh Working Conference on. IEEE,
2000, pp. 258–267.

[6] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using
cohesion and coupling for software remodularization: Is it
enough?” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, p. 24, 2016.

[7] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and
Y. Cai, “Enhancing architectural recovery using concerns,”
in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE
Computer Society, 2011, pp. 552–555.

[8] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
software:Evolution and Process, vol. 25, pp. 53–95, 2013.

[9] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and
T. Liu, “Android malware familial classification and represen-
tative sample selection via frequent subgraph analysis,” IEEE
Transactions on Information Forensics and Security, 2018.

[10] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa:
detecting android piggybacked apps through sensitive sub-
graph analysis,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 8, pp. 1772–1785, 2017.

[11] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker:
A framework for application performance monitoring and
dynamic software analysis,” in Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engi-
neering. ACM, 2012, pp. 247–248.

[12] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” in Service-Oriented Com-
puting and Applications (SOCA), 2016 IEEE 9th International
Conference on. IEEE, 2016, pp. 44–51.

[13] P. Di Francesco, I. Malavolta, and P. Lago, “Research on
architecting microservices: Trends, focus, and potential for
industrial adoption,” in Software Architecture (ICSA), 2017
IEEE International Conference on. IEEE, 2017, pp. 21–30.

[14] M. Chatterjee, S. K. Das, and D. Turgut, “Wca: A weighted
clustering algorithm for mobile ad hoc networks,” Cluster
computing, vol. 5, no. 2, pp. 193–204, 2002.

[15] S. Millett, Patterns, Principles and Practices of Domain-
Driven Design. John Wiley & Sons, 2015.

[16] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside,
N. Medvidovic, and R. Kroeger, “Measuring the impact of
code dependencies on software architecture recovery tech-
niques,” IEEE Transactions on Software Engineering, 2017.

[17] M. Fowler and K. Beck, Refactoring: improving the design
of existing code. Addison-Wesley Professional, 1999.

[18] W. Jin, T. Liu, Y. Qu, Q. Zheng, D. Cui, and J. Chi, “Dynamic
structure measurement for distributed software,” Software
Quality Journal, pp. 1–27, 2017.

[19] W. Jin, T. Liu, Y. Qu, J. Chi, D. Cui, and Q. Zheng,
“Dynamic cohesion measurement for distributed system,”
in International Workshop on Specification, Comprehension,
Testing and Debugging of Concurrent Programs. ACM,
2016, pp. 20–26.

[20] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny,
and P. Vassiliadis, “Cohesion-driven decomposition of service
interfaces without access to source code,” IEEE Transactions
on Services Computing, vol. 8, no. 4, pp. 550–562, 2015.

[21] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide,
“Search-based web service antipatterns detection,” IEEE
Transactions on Services Computing, vol. 10, no. 4, pp. 603–
617, 2017.

[22] S. Adjoyan, A.-D. Seriai, and A. Shatnawi, “Service identifi-
cation based on quality metrics object-oriented legacy system
migration towards soa,” in SEKE: Software Engineering and
Knowledge Engineering. Knowledge Systems Institute Grad-
uate School, 2014, pp. 1–6.

[23] P. Andritsos and V. Tzerpos, “Information-theoretic software
clustering,” IEEE Transactions on Software Engineering,
vol. 31, no. 2, pp. 150–165, 2005.

[24] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative
analysis of software architecture recovery techniques,” in
Proceedings of 28th IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2013, pp. 486–496.

[25] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a tech-
nique for extracting microservices from monolithic enterprise
systems,” CoRR, vol. abs/1605.03175, 2016.

218

View publication stats

https://www.researchgate.net/publication/327479166

